Adaptive and Concurrent Secure Computation from New Notions of Non-Malleability
نویسندگان
چکیده
We present a unified framework for obtaining general secure computation that achieves adaptiveUniversally Composable (UC)-security. Our framework captures essentially all previous results on adaptive concurrent secure computation, both in relaxed models (e.g., quasi-polynomial time simulation), as well as trusted setup models (e.g., the CRS model, the imperfect CRS model). This provides conceptual simplicity and insight into what is required for adaptive and concurrent security, as well as yielding improvements to set-up assumptions and/or computational assumptions. Moreover, using our framework we provide first constructions of concurrent secure computation protocols that are adaptively secure in the timing model, and in the non-uniform simulation model. Conceptually, our framework can be viewed as an adaptive analogue to the recent work of Lin, Pass and Venkitasubramaniam [STOC ‘09], who considered only non-adaptive adversaries. Their main insight was that stand-alone non-malleability was sufficient for UC-security. A main conceptual contribution of this work is, quite surprisingly, that it is indeed the case even when considering adaptive security. A key element in our construction is a commitment scheme that satisfies a new notion of nonmalleability. The notion of concurrent equivocal non-malleable commitments, intuitively, guarantees that even when a man-in-the-middle adversary observes concurrent equivocal commitments and decommitments, the binding property of the commitments continues to hold for commitments made by the adversary. This notion is stronger than standard notions of concurrent non-malleable commitments which either consider only specific commits (e.g., statistically-binding) or specific scenarios (e.g., the commitment phase and the decommitment phase are executed in a non-overlapping manner). Previously, commitments that satisfy our definition, have been constructed in setup models, but either require existence of stronger encryption schemes such as CCA-secure encryption or require independent “trapdoors” provided by the setup for every pair of parties to ensure non-malleability. We here provide a construction that eliminates these requirements and require only a single trapdoor.
منابع مشابه
Adaptive and Concurrent Secure Computation from New Adaptive, Non-malleable Commitments
We present a unified approach for obtaining general secure computation that achieves adaptive-Universally Composable (UC)-security. Using our approach we essentially obtain all previous results on adaptive concurrent secure computation, both in relaxed models (e.g., quasi-polynomial time simulation), as well as trusted setup models (e.g., the CRS model, the imperfect CRS model). This provides c...
متن کاملAdaptive and Concurrent Secure Computation from New Adaptive, Non-Malleable Commitments
We present a unified approach for obtaining general secure computation that achieves adaptiveUniversally Composable (UC)-security. Using our approach we essentially obtain all previous results on adaptive concurrent secure computation, both in relaxed models (e.g., quasi-polynomial time simulation), as well as trusted setup models (e.g., the CRS model, the imperfect CRS model). This provides co...
متن کاملSimulation-Based Concurrent Non-malleable Commitments and Decommitments
In this paper we consider commitment schemes that are secure against concurrent man-in-the-middle (cMiM) attacks. Under such attacks, two possible notions of security for commitment schemes have been proposed in the literature: concurrent non-malleability with respect to commitment and concurrent non-malleability with respect to decommitment (i.e., opening). After the original notion of non-mal...
متن کاملConstant-Round Concurrent Non-Malleable Commitments and Decommitments
In this paper we consider commitment schemes that are secure against concurrent poly-time man-in-the-middle (cMiM) attacks. Under such attacks, two possible notions of security for commitment schemes have been proposed in the literature: concurrent nonmalleability with respect to commitment and concurrent non-malleability with respect to decommitment (i.e., opening). After the original notion o...
متن کاملOn Input Indistinguishable Proof Systems
We study Input Indistinguishable Computation (IIC), a security notion proposed by Micali, Pass, and Rosen in [14] and recently considered also by Garg, Goyal, Jain and Sahai in [9]. IIC aims at generalizing the notion of a Witness Indistinguishable (WI) proof system to general two-party functionalities and in its concurrent version (cIIC) also considers security against man-in-the-middle (MiM) ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- IACR Cryptology ePrint Archive
دوره 2011 شماره
صفحات -
تاریخ انتشار 2011